Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 125(15): 3177-3188, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33834773

RESUMO

Nicotine exposure results in health risks not only for smokers but also for second- and third-hand smokers. Unraveling nicotine's degradation mechanism and the harmful chemicals that are produced under different conditions is vital to assess exposure risks. We performed a theoretical study to describe the early chemistry of nicotine degradation by investigating two important reactions that nicotine can undergo: hydrogen abstraction by hydroxyl radicals and unimolecular dissociation. The former contributes to the control of the degradation mechanism below 800 K due to a non-Arrhenius kinetics, which implies an enhancement of reactivity as temperature decreases. The latter becomes important at higher temperatures due to its larger activation energy. This change in the degradation mechanism is expected to affect the composition of vapors inhaled by smokers and room occupants. Conventional cigarettes, which operate at temperatures higher than 1000 K, are more prone to yield harmful pyridinyl radicals via nicotine dissociation, while nicotine in electronic cigarettes and vaporizers, with operating temperatures below 600 K, will be more likely degraded by hydroxyl radicals, resulting in a vapor with a different composition. Although low-temperature nicotine delivery devices have been claimed to be less harmful due to their nonburning operating conditions, the non-Arrhenius kinetics that we observed for the degradation mechanism below 873 K suggests that nicotine degradation may be more rapidly initiated as temperature is reduced, indicating that these devices may be more harmful than it is commonly assumed.


Assuntos
Nicotina/metabolismo , Fumantes , Dispositivos para Fumar , Produtos do Tabaco , Temperatura Alta , Humanos , Cinética , Conformação Molecular , Nicotina/química , Teoria Quântica
2.
J Phys Chem A ; 124(31): 6277-6286, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32663402

RESUMO

The system-specific quantum Rice-Ramsperger-Kassel (SS-QRRK) theory (J. Am. Chem. Soc. 2016, 138, 2690) is suitable to determine rate constants below the high-pressure limit. Its current implementation allows incorporating variational effects, multidimensional tunneling, and multistructural torsional anharmonicity in rate constant calculations. Master equation solvers offer a more rigorous approach to compute pressure-dependent rate constants, but several implementations available in the literature do not incorporate the aforementioned effects. However, the SS-QRRK theory coupled with a formulation of the modified strong collision model underestimates the value of unimolecular pressure-dependent rate constants in the high-temperature regime for reactions involving large molecules. This underestimation is a consequence of the definition for collision efficiency, which is part of the energy transfer model. Selection of the energy transfer model and its parameters constitutes a common issue in pressure-dependent calculations. To overcome this underestimation problem, we evaluated and implemented in a bespoke Python code two alternative definitions for the collision efficiency using the SS-QRRK theory and tested their performance by comparing the pressure-dependent rate constants with the Rice-Ramsperger-Kassel-Marcus/Master Equation (RRKM/ME) results. The modeled systems were the tautomerization of propen-2-ol and the decomposition of 1-propyl, 1-butyl, and 1-pentyl radicals. One of the tested definitions, which Dean et al. explicitly derived (Z. Phys. Chem. 2000, 214, 1533), corrected the underestimation of the pressure-dependent rate constants and, in addition, qualitatively reproduced the trend of RRKM/ME data. Therefore, the used SS-QRRK theory with accurate definitions for the collision efficiency can yield results that are in agreement with those from more sophisticated methodologies such as RRKM/ME.

3.
J Phys Chem A ; 122(51): 9792-9805, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30500199

RESUMO

Keto-enol tautomerisms are important reactions in gaseous and liquid systems with implications in different chemical environments, but their kinetics have not been widely investigated. These reactions can proceed via a unimolecular process or may be catalyzed by another molecule. This work presents a theoretical study of the HO2-catalyzed tautomerism that converts propen-2-ol into acetone at conditions relevant to combustion, atmospheric and interstellar chemistry. We performed CCSD(T)/aug-cc-pVTZ//M06-2X/cc-pVTZ ab initio and multistructural torsional variational transition state theory calculations to compute the forward and reverse rate constants. These rate constants have not been investigated previously, and modelers approximate the kinetics by comparison to analogue reactions. Two features of the potential energy surface of the studied tautomerism are highlighted. First, the HO2 radical exhibits a pronounced catalytic effect by inducing a double hydrogen atom transfer reaction with a much lower barrier than that of the unimolecular process. Second, a prereactive complex is formed with a strong OH···π hydrogen bond. The role of the studied reaction under combustion conditions has been assessed via chemical kinetic modeling of 2-butanol (a potential alternative fuel) oxidation. The HO2-assisted process was found to not be competitive with the unimolecular and HCOOH-assisted tautomerisms. The rate constants for the formation of the prereactive complex were calculated with the variable reaction coordinate transition state theory, and pressure effects were estimated with the system-specific quantum Rice-Ramsperger-Kassel theory; this allowed us to investigate the role of the complex by using the canonical unified statistical model. The formation and equilibration of the prereactive complex, which is also important at low pressures, enhances the reactivity by inducing a large tunneling effect that leads to a significant increase of the rate constants at cold and ultracold temperatures. These findings may help to understand and model the fate of complex organic molecules in the interstellar medium, and suggest an alternative route for the high energy barrier keto-enol tautomerism which otherwise is not kinetically favored at low temperatures.

4.
J Phys Chem A ; 122(14): 3547-3555, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29558796

RESUMO

The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with its favorable blend properties and low hygroscopicity. Although C4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Enols are important intermediates in the combustion of C4 alcohols, as well as in atmospheric processes. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular tautomerism of propen-2-ol ↔ acetone, which is included in butanol combustion kinetic models, is assigned rate parameters based on the tautomerism vinyl alcohol ↔ acetaldehyde as an analogy. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the titled reaction was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) ab initio calculations, with multistructural torsional anharmonicity and variational transition state theory considerations in a wide temperature and pressure range (200-3000 K; 0.1-108 kPa). Results differ from vinyl alcohol ↔ acetaldehyde analogue reaction, which shows lower rate constant values. It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed rate constants showed important differences in comparison with previous results, such as larger acetone yield and quicker propen-2-ol consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...